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Abstract
We consider a Dirac electron in the presence of an exponentially decaying magnetic field. We
obtain exact energy eigenvalues with a zero-energy state and the corresponding eigenfunctions.
We also calculate the probability density and current distributions.

(Some figures in this article are in colour only in the electronic version)

The experimental realization of graphene, a two-dimensional
(2D) sheet of graphite [1, 2], and of the massless Dirac nature
of its electron low energy spectrum [3, 4] has given rise to a
tremendous interest in this field (for recent reviews, see [5, 6]).
The energy spectrum which goes linearly with the momentum
and the specific density of states of the Dirac electrons [7]
enabled the study of experimentally chiral tunneling and
the Klein paradox in graphene [8]. This also leads to the
anomalous Landau level spectrum in a uniform magnetic field,
which gives rise to the half-integer quantum Hall effect [3, 9].

The discovery of the half-integer quantum Hall effect and
the zero-energy Landau level [9] stimulated a lot of theoretical
research interest in Dirac electrons in uniform as well as
non-uniform magnetic fields. For example, the Dirac–Weyl
equation has been solved numerically for a single electron
in a step-like magnetic field, magnetic barrier and polytropic
magnetic field with B = B0yγ , where γ > 0 [10–13].
We should also mention that the Schrödinger equation has
been solved numerically for spinless 2D electrons in a linearly
varying magnetic field [14], step-like magnetic field and
magnetic barrier [15–17]. An analytical solution has been
given for an electron in the presence of an exponentially
decaying magnetic field [18].

In this work, we solve analytically for the Dirac electron
in graphene in the presence of an exponentially decaying
magnetic field B = B0e−λx .

The Hamiltonian of the massless electrons in graphene
near one of the Dirac K points is described by a two-component
Dirac–Weyl equation

H = vFσ · p, (1)

where vF ≈ 106 m s−1 is the Fermi velocity, σ = {σx , σy}
are the 2 × 2 Pauli matrices and p = −ih̄∇ is the two-
dimensional momentum operator. The pseudo-relativistic

dispersion relation with Fermi velocity arises due to the
sublattice structure: the basis of the graphene honeycomb
lattice contains two carbon atoms, giving rise to an isospin
degree of freedom. In the presence of an external magnetic
field (B = ∇ × A) perpendicular to the graphene plane,
the Hamiltonian of the single Dirac electron (−e) is H =
vFσ · (p + eA).

We consider an electron in the graphene sheet in
the presence of a non-uniform magnetic field B(x, y) =
{0, 0, B0e−λx ẑ} perpendicular to the x–y plane. In the Landau
gauge, the corresponding vector potential is A(x, y) =
{0,−(1/λ)B0e−λx ŷ, 0}. When λ → 0, the non-uniform
magnetic field becomes a constant magnetic field. The time-
independent Dirac–Weyl equation is

vFσ · (p + eA)�(x, y) = E�(x, y). (2)

Here, �(x, y) = {�+(x, y),�−(x, y)}T is the two-
component wavefunction and T denotes the transpose of the
column vector. Due to the translation invariance in the
y-direction, the longitudinal momentum ky is a conserved
quantity. One can parameterize the wavefunction as�(x, y) =
eiky y{ψ+(x), ψ−(x)}T. From equation (2), one can get two
coupled equations for ψ+ and ψ− as given below:

−ih̄vF

[
∂

∂x
+

(
ky + e

h̄
Ay

)]
ψ−(x) = Eψ+(x) (3)

and

−ih̄vF

[
∂

∂x
−

(
ky + e

h̄
Ay

)]
ψ+(x) = Eψ−(x). (4)

Using two coupled equations (3) and (4), we get
Schrödinger-like decoupled equations for ψ+ and ψ−:[

−(h̄vF)
2 ∂

2

∂x2
+ V+(x)

]
ψ+ = E2ψ+ (5)
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and [
−(h̄vF)

2 ∂
2

∂x2
+ V−(x)

]
ψ− = E2ψ−. (6)

Here, the effective potentials V± are given by

V± = (h̄vF)
2

[
± e

h̄

∂

∂x
Ay(x)+

(
ky + e

h̄
Ay

)2
]
. (7)

Here, the first term on the right-hand side of the above equation
is the Zeeman-like term due to the isospin degree of freedom in
the presence of the magnetic field. Define the magnetic length
scale as l(x) = √

h̄/eB(x).
As seen in figure 1, the effective potentials V±(x) have

the form of an asymmetric quantum wells formed by the
exponentially decaying magnetic field. It is well known that
such a well can have a bound state if the well is sufficiently
deep. Figure 1 will be discussed in more detail later on.

Following the references [18, 19], we introduce two new
dimensionless variables:

ξ(x) = 1

(l(x)λ)2
= eB0e−λx

h̄λ2
(8)

and

ξ0 = |ky|
λ

≡ eB0e−λx0

h̄λ2
= 1

(l(x0)λ)2
. (9)

Here, l(x0) = √
h̄/eB(x0) is the magnetic length scale for

a given value of x = x0 which depends on the conserved
wavevector ky through equation (8). Also, ξ varies from 0 to
∞ when x varies from ∞ to −∞.

In the new variables, equations (5) and (6) reduce to
[

d2

dξ 2
+ 1

ξ

d

dξ
− β2

ξ 2
+ 2ξ0 ∓ 1

ξ
− 1

]
ψ± = 0, (10)

where β2 = ξ 2
0 −ε2 and ε = E/(h̄vFλ). The behavior for small

and large ξ suggests that the general solution can be written as
ψ±(ξ) ∼ ξβe−ξw±(ξ). Inserting this ansatz in the previous
equation, we get for w±(z = 2ξ)

[
z

d2

dz2
+ (γ − z)

d

dz
− α±

]
w±(z) = 0 (11)

which has the form of a confluent hypergeometric equation,
where γ = 2β + 1 and α± = −ξ0 + β + 1

2 ± 1
2 . Two

linearly independent solutions can be chosen as F[α±, γ ; z]
and U [α±, γ ; z], so the general solution can be written as
w±(z) = A1 F[α±, γ ; z] + A2U [α±, γ ; z]. Here, F and
U are the first and second kinds of confluent hypergeometric
functions, respectively. However, U is not regular at the origin
and has to be discarded. The requirement of normalizability
implies that the solution is acceptable if α± is a negative
integer, α± = −ν, ν = 0, 1, 2, . . .. This constraint produces
the quantization of the energy:

E± = h̄vFλ

2

√
(2ξ0)2 − (2ξ0 − (2ν + 1 ± 1))2. (12)

The energy eigenvalues are then conveniently written as

En = h̄vFλ
√
(ξ0)2 − (ξ0 − n)2. (13)

Figure 1. Plots of the effective potential V±(x) (in units of (h̄ωc)
2)

versus X together with the energy eigenvalues En (in units of h̄ωc)
for λ̄ = 0.5 and λ̄ = 0.01 (only the zero-energy level is shown
in this case).

For E+, ν = n − 1 and for E−, ν = n. For n = 0 and
E+, ν = −1, but ν cannot be negative. For n = 0 and E−,
ν = 0. Therefore, the n = 0 state is not degenerate. For
n = 0, the solution w+ does not exist. We will consistently
incorporate this fact by defining wn−1 = 0. The corresponding
wavefunction is given by

w±(2ξ) = 1 F1[−(n − 1
2 ∓ 1

2 ), 2β + 1, 2ξ ], (14)

where 1 F1[−n, α, x] is the confluent hypergeometric function.
Equation (13) can be rewritten as

E2
n = h̄2ω2

c (x0)2n

(
1 − n

2ξ0

)
, (15)

where the local cyclotron frequency is ωc(x0) = (vF)/ l(x0).
Note that when λ̄ → 0 (ξ0 → ∞), the energy eigenvalues
reduce to the well known relativistic Landau level structure for
uniform magnetic field: En = (h̄vF/ l(x0))

√
2n.

When λ̄ is very large, the effect of inhomogeneous
magnetic field vanishes and the Dirac electron feels no
effective potential. It behaves like a free particle. In this limit,
the energy spectrum becomes En ∝ n which agrees with the
known result for the free Dirac electron [20].

The complete normalized wavefunctions can be written as

�
(n)
+ = eiky y√

2L yl(x0)
(2ξ0)

βe−λ̄βX e−ξ0e−λ̄X
wn−1 (16)

and

�
(n)
− = icneiky y√

2L yl(x0)
(2ξ0)

βe−λ̄βX e−ξ0e−λ̄X
wn, (17)
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Figure 2. Plots of the probability density distribution ρn(x) (in units
of 1/(L yl(x0))) versus X for various values of n with λ̄ = 0.5 and
0.01.

where L y is the length of the system along the y axis, c0 = √
2

and cn>0 = 1. Also, X = (x − x0)/ l(x0), λ̄ = λl(x0), and wn

is given by

wn =
√

�[2β + n + 1]λ̄
�[2β + 1]�[2β]�[n + 1] 1 F1[−n, 2β + 1, 2ξ0e−λ̄X ].

(18)
We have also checked that the wavefunctions (16) and (17)
reduce to that of the Dirac Landau level for constant magnetic
field (i.e. a Hermite polynomial multiplied with a Gaussian
factor) when λ̄ → 0. The phase factor i in the lower component
wavefunction (17) is obtained from equation (4), which is
crucial for calculating the probability current density.

The effective potential (7) can be rewritten as

V± = (h̄ωc(x0))
2[±e−λ̄X + ξ0(1 − e−λ̄X )2]. (19)

For weak inhomogeneity (λ̄ 
 1), the effective potentials
are almost symmetric around the X = 0 point. For strong
inhomogeneity (λ̄ � 0), there is a strong asymmetry of
the effective potentials. The effective potentials for negative
ky do not have any global minimum. Therefore, the bound
state does not exist for negative ky . The effective potentials
together with the energy eigenvalues for various values of λ̄ are
shown in figure 1. Both the effective potentials get saturated
to (h̄ωc(x0))

2ξ0 at large X . The zero-energy state (n = 0)
always lies inside the potential V− but outside the potential
V+. However, all other discrete energy levels (n > 0) are
lying inside both the potentials V±, which is expected from the
solution of the Dirac–Weyl equation. The number of energy
levels decreases as we increase λ̄. For example, there are five
energy levels including the zero-energy state when λ̄ = 0.5.

Figure 3. Plots of the probability current density Jn(x) (in units of
evF/(L yl(x0))) versus X for various values of n with fixed λ̄ = 0.5
and 0.01.

On the other hand, the number of energy levels is quite large
when λ̄ = 0.01. There are a finite number of discrete energy
levels for a given asymmetric parameter λ̄. The total number
of discrete energy levels including the zero-energy level can be
calculated easily from the condition that E2

n � V±(X → ∞)

and it is given by N = Int[ξ0] + 1. Here, Int[b] means the
integer that is just smaller than b. In figure 1, only the zero-
energy level is shown for the λ̄ = 0.01 case.

The probability density distribution of Dirac electrons in a
given level n is ρn(x) = �(n)†(x)�(n)(x). The probability
density distributions ρn for different values of n and λ̄ are
shown in figure 2. The velocity operator that follows from the
Heisenberg equation is given by v = vFσ . The probability
current distribution is Jn(x) = evF�

(n)†(x)σy�
(n)(x) =

−ievF(�
(n)∗
+ (x)�(n)

− (x) − �
(n)∗
− (x)�(n)

+ (x)). The probability
current distributions for various values of n and λ̄ are shown
in figure 3. The zero-energy state does not carry any current,
irrespective of the nature of the magnetic field. When λ̄ → 0,
ρn and Jn are symmetric around the point X = 0. When
λ̄ � 0, ρn and Jn are strongly asymmetric, as is expected from
the effective potentials.

In summary, we have obtained exact energy eigenvalues
and the corresponding eigenfunctions for a Dirac electron
in the presence of an exponentially decaying magnetic field.
We have also provided the probability density and current
distributions for each band.
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